Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Ju-Hun Kim 1 Article
Property Evaluation of Tungsten-Carbide Hard Materials as a Function of Binder
Ju-Hun Kim, Ik-Hyun Oh, Jeong-Han Lee, Sung-Kil Hong, Hyun-Kuk Park
J Powder Mater. 2019;26(2):132-137.   Published online April 1, 2019
DOI: https://doi.org/10.4150/KPMI.2019.26.2.132
  • 37 View
  • 0 Download
  • 2 Citations
AbstractAbstract PDF

Tungsten carbide (WC) hard materials are used in various industries and possess a superior hardness compared to other hard materials. They have particularly high melting points, high strength, and abrasion resistance. Accordingly, tungsten carbide hard materials are used for wear-resistant tools, cutting tools, machining tools, and other tooling materials. In this study, the WC-5wt.%Co, Fe, Ni hard materials are densified using the horizontal ball milled WC-Co, WC-Fe, and WC-Ni powders by a spark plasma sintering process. The WC-5Co, WC-5Fe, and WC-5Ni hard materials are almost completely densified with a relative density of up to 99.6% after simultaneous application of a pressure of 60 MPa and an electric current for about 15 min without any significant change in the grain size. The average grain size of WC-5Co, WC-5Fe, and WC-5Ni that was produced through SPS was about 0.421, 0.779, and 0.429 μm, respectively. The hardness and fracture toughness of the dense WC-5Co, WC-5Fe, WC-5Ni hard materials were also investigated.

Citations

Citations to this article as recorded by  
  • Synthesis of W2C by Spark Plasma Sintering of W-WC Powder Mixture and Its Etching Property
    Gyu-Sang Oh, Sung-Min Lee, Sung-Soo Ryu
    Journal of Korean Powder Metallurgy Institute.2020; 27(4): 293.     CrossRef
  • Fabrication and Properties of Densified Tungsten by Magnetic Pulse Compaction and Spark Plasma Sintering
    Eui Seon Lee, Jongmin Byun, Young-Keun Jeong, Sung-Tag Oh
    Korean Journal of Materials Research.2020; 30(6): 321.     CrossRef

Journal of Powder Materials : Journal of Powder Materials